
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Basalt-CO2-brine wettability at storage conditions in basaltic formations

Basalt-CO2-brine wettability at storage conditions in basaltic formations
Abstract CO2 geo-storage in basaltic formations has recently been demonstrated as a viable solution to rapidly sequester and mineralize CO2. In case CO2 is injected into such basalt reservoirs in supercritical form, a two-phase system (reservoir brine and supercritical CO2) is created, and it is of key importance to specify the associated CO2-basalt wettability so that fluid distributions and CO2 flow through the reservoir can be predicted. However, there is a serious lack of data for basalt CO2-wettability. We therefore measured water contact angles on basalt substrates in CO2 atmosphere. The results indicate that at shallow depth (below 500 m) basalt is strongly water-wet. With increasing depth the basalt becomes less hydrophilic, and turns intermediate-wet at a depth of 900 m. We conclude that basalt is more CO2-wet than chemically clean minerals (quartz, calcite), especially at depths below 900 m. However, the basalt had a CO2-wettability similar to some caprock samples and a gas-reservoir sandstone. The data presented in this paper will thus aid in the prediction and optimization of CO2 geo-storage in basalt formations.
- Edith Cowan University Australia
- Edith Cowan University Australia
- Curtin University Australia
Engineering, CO geo-sequestration 2, Wettability, Storage capacity, Basalt
Engineering, CO geo-sequestration 2, Wettability, Storage capacity, Basalt
6 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).33 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
