Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells

Authors: Volker Schmidt; Xuhui Feng; Yun Wang; Ralf Thiedmann; Werner Lehnert; Sung Chan Cho;

Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells

Abstract

Abstract This paper combines the stochastic-model-based reconstruction of the gas diffusion layer (GDL) of polymer electrolyte fuel cells (PEFCs) and direct simulation to investigate the pore-level transport within GDLs. The carbon-paper-based GDL is modeled as a stack of thin sections with each section described by planar two-dimensional random line tessellations which are further dilated to three dimensions. The reconstruction is based on given GDL data provided by scanning electron microscopy (SEM) images. With the constructed GDL, we further introduce the direct simulation of the coupled transport processes inside the GDL. The simulation considers the gas flow and species transport in the void space, electronic current conduction in the solid, and heat transfer in both phases. Results indicate a remarkable distinction in tortuosities of gas diffusion passage and solid matrix across the GDL with the former ∼1.2 and the latter ∼13.8. This difference arises from the synthetic microstructure of GDL, i.e. the lateral alignment nature of the thin carbon fiber, allowing the solid-phase transport to occur mostly in lateral direction. Extensive discussion on the tortuosity is also presented. The numerical tool can be applied to investigate the impact of the GDL microstructure on pore-level transport and scrutinize the macroscopic approach vastly adopted in current fuel cell modeling.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%