Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Heat and Mass Transfer
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mass diffusion characteristics on performance of polymer electrolyte membrane fuel cells with serpentine channels of different width

Authors: Dasol Kim; Jaeyeon Kim; Obeen Kwon; Geon Hwi Kim; Hyeok Kim; Taehyun Park; Hyeonjin Cha; +2 Authors

Mass diffusion characteristics on performance of polymer electrolyte membrane fuel cells with serpentine channels of different width

Abstract

Abstract Variation in performance of polymer electrolyte membrane fuel cells (PEMFCs) is analyzed, focusing on operating pressure and change in the width of the flow channels. At 0 bar, the maximum power densities are 431, 569, and 799 mW/cm2 with the width of 1.0, 0.5, and 0.3 mm, and at 3.0 bar, the maximum power densities are enhanced to 650, 829, and 914 mW/cm2, respectively. A pair of bipolar plates having the largest width exhibit the highest effect of the pressurized operation, and thus the most considerable change rate in maximum power density (50.8%). To investigate the diffusion phenomenon in the flow channels, a correlation is derived by introducing non-dimensional parameters. The dimensionless number associated with vertical diffusion, Sherwood number, decreases with lessening the width of flow channels and increasing the operating pressure, and diffusion characteristics of PEMFCs are generalized through Sherwood number correlation consisting of Reynolds and Schmidt number. Polymer electrolyte membrane fuel cell; Electrochemical impedance spectroscopy; Flow channel; Diffusion; Sherwood number

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%