Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving hydrogen production from cassava starch by combination of dark and photo fermentation

Authors: Junhu Zhou; Wenlu Song; Kefa Cen; Jun Cheng; Huibo Su;

Improving hydrogen production from cassava starch by combination of dark and photo fermentation

Abstract

Abstract The combination of dark and photo fermentation was studied with cassava starch as the substrate to increase the hydrogen yield and alleviate the environmental pollution. The different raw cassava starch concentrations of 10–25 g/l give different hydrogen yields in the dark fermentation inoculated with the mixed hydrogen-producing bacteria derived from the preheated activated sludge. The maximum hydrogen yield (HY) of 240.4 ml H2/g starch is obtained at the starch concentration of 10 g/l and the maximum hydrogen production rate (HPR) of 84.4 ml H2/l/h is obtained at the starch concentration of 25 g/l. When the cassava starch, which is gelatinized by heating or hydrolyzed with α-amylase and glucoamylase, is used as the substrate to produce hydrogen, the maximum HY respectively increases to 258.5 and 276.1 ml H2/g starch, and the maximum HPR respectively increases to 172 and 262.4 ml H2/l/h. Meanwhile, the lag time (λ) for hydrogen production decreases from 11 h to 8 h and 5 h respectively, and the fermentation duration decreases from 75–110 h to 44–68 h. The metabolite byproducts in the dark fermentation, which are mainly acetate and butyrate, are reused as the substrates in the photo fermentation inoculated with the Rhodopseudomonas palustris bacteria. The maximum HY and HPR are respectively 131.9 ml H2/g starch and 16.4 ml H2/l/h in the photo fermentation, and the highest utilization ratios of acetate and butyrate are respectively 89.3% and 98.5%. The maximum HY dramatically increases from 240.4 ml H2/g starch only in the dark fermentation to 402.3 ml H2/g starch in the combined dark and photo fermentation, while the energy conversion efficiency increases from 17.5–18.6% to 26.4–27.1% if only the heat value of cassava starch is considered as the input energy. When the input light energy in the photo fermentation is also taken into account, the whole energy conversion efficiency is 4.46–6.04%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    145
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
145
Top 1%
Top 10%
Top 1%