Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A dynamic model for high temperature polymer electrolyte membrane fuel cells

Authors: José M. Sousa; José M. Sousa; M. Boaventura; Adélio Mendes;

A dynamic model for high temperature polymer electrolyte membrane fuel cells

Abstract

Abstract A dynamic one-dimensional isothermal phenomenological model was developed in order to describe the steady-state and transient behavior of high temperature polymer electrolyte membrane fuel cells (PEMFC). The model accounts for transient species mass transport at the bipolar plates and gas diffusion layers and the electric double layers charge/discharge. To record the impedance spectra, a small sinusoidal voltage perturbation was imposed to the simulator over a wide range of frequencies, and the resultant current density amplitude and phase were recorded. The steady-state behavior of the fuel cell, as well as the impedance spectra were obtained and compared to experimental data of two different fuel cells equipped with different MEAs based on phosphoric acid polybenzimidazole membrane. This approach is new and allows a deeper analysis of the controlling phenomena. The model fitted quite well the I–V curves for both systems, but fairly well the Nyquist plots. The differences observed in the Nyquist plots were attributed to proton resistance in the catalyst layer and the gas diffusion limitations to cross the phosphoric acid layer that coats the catalyst, phenomena not included in the proposed phenomenological model.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%