Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources

Authors: David P. Serrano; David P. Serrano; Javier Dufour; Javier Dufour; José Luis García Fierro; J. L. Gálvez; Enrique Soria; +1 Authors

Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources

Abstract

Abstract New processes under development for producing hydrogen have been assessed using a life cycle methodology and compared to conventional ones. The aim of this paper is to determine the main obstacles to be beaten or the critical aspects to be addressed to ensure the feasibility of these processes. Water photosplitting, solar two-step thermochemical cycles and automaintained methane decomposition with different lay-outs were studied. They have been compared to methane steam reforming with CCS and electrolysis with different electricity sources. The results show the good behaviour of the automaintained methane decomposition. This process is one of the best options when the greenhouse effect emissions are evaluated. Nevertheless, the consumption of a great amount of a non-renewable resource, i.e., natural gas, as reagent can be negative. The two-step thermochemical cycles based on NiFe 2 O 4 is also an interesting option, but its behaviour depends largely on the infrastructure materials employed on the installations. The most promising option is photosplitting with CdS as catalysts. This process shows the best performance.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 1%
Top 10%
Top 10%