
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Life cycle assessment of alternatives for hydrogen production from renewable and fossil sources

Abstract New processes under development for producing hydrogen have been assessed using a life cycle methodology and compared to conventional ones. The aim of this paper is to determine the main obstacles to be beaten or the critical aspects to be addressed to ensure the feasibility of these processes. Water photosplitting, solar two-step thermochemical cycles and automaintained methane decomposition with different lay-outs were studied. They have been compared to methane steam reforming with CCS and electrolysis with different electricity sources. The results show the good behaviour of the automaintained methane decomposition. This process is one of the best options when the greenhouse effect emissions are evaluated. Nevertheless, the consumption of a great amount of a non-renewable resource, i.e., natural gas, as reagent can be negative. The two-step thermochemical cycles based on NiFe 2 O 4 is also an interesting option, but its behaviour depends largely on the infrastructure materials employed on the installations. The most promising option is photosplitting with CdS as catalysts. This process shows the best performance.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).148 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
