
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Setting a best practice for determining the EGR rate in hydrogen internal combustion engines

handle: 1854/LU-4096805
Abstract Exhaust gas recirculation (EGR) is an effective way to reduce NOx-emissions and increase the efficiency of hydrogen fueled internal combustion engines. Knowledge of the exact amount of EGR is crucial to understand the effects of EGR. As the exhaust gas flow is pulsating and chemically aggressive, the flow rate is typically not measured directly and has to be derived from other quantities. For hydrocarbon fuels, the EGR rate is generally calculated from a molar CO2 balance, but for hydrogen engines this obviously cannot be used as there are no CO2 emissions, and consequently no standard practice has been established. This work considers three methods to calculate the amount of EGR in a hydrogen engine. The first one is based upon a volume balance in the mixing section of exhaust gases and fresh air. The second and third method uses a molar balance of O2 and H2O respectively in this mixing section. The three methods are developed and tested for their accuracy with an error analysis. Additionally, the methods are applied to an experimental dataset gathered on a single cylinder hydrogen engine. Both the theoretical analysis and the experimental results confirm the method based on an O2 molar balance as the most accurate one. The least practical method is the one based on an H2O balance as it requires additional relative humidity sensors and is less accurate than the others.
- Ghent University Belgium
- Argonne National Laboratory United States
Technology and Engineering, Error analysis, EGR measurement, EXHAUST-GAS RECIRCULATION, Internal combustion engine, Hydrogen
Technology and Engineering, Error analysis, EGR measurement, EXHAUST-GAS RECIRCULATION, Internal combustion engine, Hydrogen
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
