
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel non-linear model-based control strategy to improve PEMFC water management – The flatness-based approach

In the area of PEMFC, water management and thus membrane humidity still remains one of the most challenging issues affecting PEMFC efficiency and lifetime. In this investigation, an innovative method to improve PEMFC water management is presented and a non-linear model-based control strategy is proposed. The novelty of this approach relies upon a simplified PEMFC model combining the benefits of the Differential Flatness Theory. Efficiency and relevance of the proposed water management strategy is confirmed in simulation environment through several controlled scenarios. It was found that in each case, the flatness-based controller successfully regulates the membrane humidity, while avoiding flooding or even membrane drying that can lead to irreversible damage. Furthermore, the novel model demonstrates excellent performance in terms of set-point tracking, disturbances rejection and robustness against parameters uncertainties and measurement noise. Overall, this novel approach appears to be a possible and promising towards improving PEMFC water management issues.
- French Institute for Research in Computer Science and Automation France
- University of La Réunion Réunion
- University of the Western Cape South Africa
- University of La Réunion Réunion
Water management, Differential Flatness Theory, Proton exchange membrane fuel cell, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, [ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering
Water management, Differential Flatness Theory, Proton exchange membrane fuel cell, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering, [ SPI.GPROC ] Engineering Sciences [physics]/Chemical and Process Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
