
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance variation of bendable polymer electrolyte fuel cell based on Ag nanowire current collector under mixed bending and twisting load

Abstract The bendable fuel cell based on polydimethylsiloxane and Ag nanowire current collectors was fabricated and characterized as it is subject to mixed bending and twisting load. The power density of the fuel cell decreased with the increasing twisting angle regardless of the application of bending. However, the fuel cell with the bending component showed higher power densities than that without bending in all twisting angles. By calculating the stress distribution inside the fuel cell using finite-element method, it was found that the higher performance in the bendable fuel cell under both bending and twisting load is due to the stronger compressive stress on a membrane-electrode assembly induced by the bending load. From electrochemical impedance investigation, it was visualized that although the twisting load increases both electrolyte and electrode resistances, this effect seems to be canceled by the bending, leading to the increased performance.
- Georgia Institute of Technology United States
- Seoul National University Korea (Republic of)
- Seoul National University Korea (Republic of)
- Georgia Institute of Technology United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).40 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
