Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effects of hydrogen on the combustion, performance and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation

Authors: Joonsuk Kim; Kwang Min Chun; Soonho Song; Hong-Kil Baek; Seung Woo Lee;

The effects of hydrogen on the combustion, performance and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation

Abstract

Abstract The effects of hydrogen on the combustion characteristics, thermal efficiency, and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation (EGR) were investigated experimentally at brake mean effective pressures of 4, 6, and 8 bar at 2000 rpm. Four cases of hydrogen energy fraction (0%, 1%, 3% and 5%) of total fuel energy were studied. Hydrogen energy fraction of total fuel energy was hydrogen energy in the sum of energy of consumed gasoline and added hydrogen. The test results demonstrated that hydrogen addition improved the combustion speed and reduced cycle-to-cycle variation. In particular, cylinder-to-cylinder variation dramatically decreased with hydrogen addition at high EGR rates. This suggests that the operable EGR rate can be widened for a turbo gasoline direct-injection engine. The improved combustion and wider operable EGR rate resulted in enhanced thermal efficiency. However, the turbocharging effect acted in opposition to the thermal efficiency with respect to the EGR rate. Therefore, a different strategy to improve the thermal efficiency with EGR was required for the turbo gasoline direct-injection engine. HC and CO2 emissions were reduced but NOX emissions increased with hydrogen addition. The CO emissions as a function of engine load followed different trends that depended on the level of hydrogen addition.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze