Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Green hydrogen production potential for developing a hydrogen economy in Pakistan

Authors: Rafiullah Khan; Syed Athar Masood; Irfan Ahmad Gondal;

Green hydrogen production potential for developing a hydrogen economy in Pakistan

Abstract

Abstract Pakistan's energy crisis can be diminished through the use of Renewable and alternative sources of energy. Hydrogen as an energy vector is likely to replace the fossil fuels in the future owing to the political, financial and environmental factors associated with the latter. In this regard it is imperative that conscious effort is directed towards the production of hydrogen from Renewable resources. Renewable energy resources are abundantly available in Pakistan. The need to produce Hydrogen from Renewable resources in Pakistan (or any developing economy) is investigated because it is possible to store vast amount of intermittent renewable energy for later use. Thus the introduction of Hydrogen in the energy supply chain implies the start of a Pakistan Hydrogen Economy. Many nations have developed the Hydrogen Energy Roadmap, and if Pakistan has to follow suite it is only possible through the employment of Renewable energy resources. This study estimates the potential of different Renewable resources available in Pakistan i.e. Solar, Wind, Geothermal, Biomass and Municipal Solid waste. An estimate is then made for the potential of producing hydrogen from various established technologies from each of these Renewable resources. A number of reviews have been published stating the availability and usage of Renewable energy in Pakistan; however no specific study has been focused on the use of Renewable resources for developing a Hydrogen economy or a power-to-gas system in Pakistan. This study concludes that that Biomass is the most feasible feedstock for developing a Hydrogen supply chain in Pakistan with a potential to generate 6.6 million tons of Hydrogen annually, followed by Solar PV that has a generation potential of 2.8 million tons and then Municipal solid waste with a capacity of 1 million ton per annum.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 1%
Top 1%
Top 1%