Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hydrogen production via thermochemical H2O splitting using CaSO4 – CaO redox reactions

Authors: Rahul R. Bhosale;

Hydrogen production via thermochemical H2O splitting using CaSO4 – CaO redox reactions

Abstract

Abstract By applying the principles of the second law of thermodynamics and utilizing the HSC Chemistry software, the thermodynamic equilibrium and efficiency analysis of the CaSO4 CaO water splitting cycle was performed in this investigation. The temperatures desirable and the equilibrium compositions allied with the thermal reduction of CaSO4 and the re-oxidation of CaO via water splitting reaction were estimated. The obtained results indicate that the thermal reduction temperature (TH) required to completely decompose the CaSO4 was decerased from 2220 to 1890 K due to the rise in the molar flow rate of ( n ˙ A r ) from 1 to 50 mol/s. In addition, the consequence of the TH, n ˙ A r , and the water splitting temperature ( T L ) on the process parameters such as total amount of solar energy needed, re-radiation losses, energy dissipated by the water splitting reactor and others associated with the CaSO4 CaO water splitting cycle was scrutinized. By utilizing higher n ˙ A r from 1 to 50 mol/s, the TH was decreased from 2200 to 1890 K. However, as the n ˙ A r was increased from 1 to 50 mol/s, the amount of heat energy needed to heat the Ar was also upsurged from 12.5 to 625.6 kW. This rise in the Q ˙ A r − h e a t i n g , directly reflected into an increase in the Q ˙ s o l a r − c y c l e from 1063.4 up to 2653.9 kW. The findings of this study further confirms that the maximum solar-to-fuel energy conversion efficiency ( η s o l a r − t o − f u e l ) equal to 27.4% was realized by conducting the CaSO4 CaO water splitting cycle at TH = 2220 K, n ˙ A r = 1 mol/s, and TL = 1100 K. By using 50% of the recuperable heat, the η s o l a r − t o − f u e l of the CaSO4 CaO water splitting cycle can be enhanced up to 36.2%.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average