
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell

handle: 10023/20669
Abstract A direct carbon fuel cell is an electricity generation device using solid carbon as a fuel directly with no reforming process. In this study, three-carbon fuels, graphitic carbon (GC), carbon black (CB), and biomass carbon (BC) are tested as the fuel to investigate the influence of carbon fuel properties on the cell performance in HDCFC with a traditional nickel oxide as the anode. Either an electrolyte-supported cell with a thin nickel oxide anode or an anode-supported cell with a thick nickel oxide anode is used to evaluate the electrochemical reactivity of carbon samples. These three-carbon fuels are characterised on the crystal structure, particle size, composition, and surface property. It is found that GC shows excellent cell performance on thin nickel oxide anode. However, it displays relatively slow electrochemical reactivity on the thick anode due to its great extent of carbon oxidation. BC shows good initial cell performance but fast degradation of the cell performance, as much more hydrogen is released at the beginning of the cell test. The anode reactions of HDCFCs are explored by the in-situ gas analysis in open circuits and under current load conditions. It is observed that GC produces the highest amount of CO among these three fuels, suggesting that carbon oxidation is the dominant electrochemical process in HDCFCs after a certain time when most of the hydrogen is released from the pyrolysis process.
- University of St Andrews United Kingdom
- University of St Andrews United Kingdom
- Sichuan University of Science and Engineering China (People's Republic of)
- Sichuan University of Science and Engineering China (People's Republic of)
660, NDAS, In-situ gas analysis, 540, QD Chemistry, 620, Electrochemical oxidation, Carbon fuel properties, Graphite, QD
660, NDAS, In-situ gas analysis, 540, QD Chemistry, 620, Electrochemical oxidation, Carbon fuel properties, Graphite, QD
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
