
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An overview of solar decarbonization processes, reacting oxide materials, and thermochemical reactors for hydrogen and syngas production

Abstract Solar decarbonization processes are related to the different thermochemical conversion pathways of hydrocarbon feedstocks for solar fuels production using concentrated solar energy as the external source of high-temperature process heat. The main investigated routes aim to convert gaseous and solid feedstocks (methane, coal, biomass …) into hydrogen and syngas via solar cracking/pyrolysis, reforming/gasification, and two-step chemical looping processes using metal oxides as oxygen carriers, further associated with thermochemical H2O/CO2 splitting cycles. They can also be combined with metallurgical processes for production of energy-intensive metals via solar carbothermal reduction of metal oxides. Syngas can be further converted to liquid fuels while the produced metals can be used as energy storage media or commodities. Overall, such solar-driven processes allow for improvements of conversion yields, elimination of fossil fuel or partial feedstock combustion as heat source and associated CO2 emissions, and storage of intermittent solar energy in storable and dispatchable chemical fuels, thereby outperforming the conventional processes. The different solar thermochemical pathways for hydrogen and syngas production from gaseous and solid carbonaceous feedstocks are presented, along with their possible combination with chemical looping or metallurgical processes. The considered routes encompass the cracking/pyrolysis (producing solid carbon and hydrogen) and the reforming/gasification (producing syngas). They are further extended to chemical looping processes involving redox materials as well as metallurgical processes when metal production is targeted. This review provides a broad overview of the solar decarbonization pathways based on solid or gaseous hydrocarbons for their conversion into clean hydrogen, syngas or metals. The involved metal oxides and oxygen carrier materials as well as the solar reactors developed to operate each decarbonization route are further described.
reforming, solar fuel, metallurgy, gasification, pyrolysis, [SPI]Engineering Sciences [physics], oxygen carrier, chemical looping, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
reforming, solar fuel, metallurgy, gasification, pyrolysis, [SPI]Engineering Sciences [physics], oxygen carrier, chemical looping, [SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).59 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
