
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of hydrogen storage technology in risk-constrained stochastic scheduling of multi-carrier energy systems considering power, gas and heating network constraints

The operation of energy systems considering a multi-carrier scheme takes several advantages of economical, environmental, and technical aspects by utilizing alternative options is supplying different kinds of loads such as heat, gas, and power. This study aims to evaluate the influence of power to hydrogen conversion capability and hydrogen storage technology in energy systems with gas, power, and heat carriers concerning risk analysis. Accordingly, conditional value at risk (CVaR)-based stochastic method is adopted for investigating the uncertainty associated with wind power production. Hydrogen storage system, which can convert power to hydrogen in off-peak hours and to feed generators to produce power at on-peak time intervals, is studied as an effective solution to mitigate the wind power curtailment because of high penetration of wind turbines in electricity networks. Besides, the effect constraints associated with gas and district heating network on the operation of the multi-carrier energy systems has been investigated. A gas-fired combined heat and power (CHP) plant and hydrogen storage are considered as the interconnections among power, gas and heat systems. The proposed framework is implemented on a system to verify the effectiveness of the model. The obtained results show the effectiveness of the model in terms of handling the risks associated with multi-carrier system parameters as well as dealing with the penetration of renewable resources.
- An Giang University Viet Nam
- Northumbria University United Kingdom
- University of Tabriz Iran (Islamic Republic of)
- University of Tabriz Iran (Islamic Republic of)
- Pennsylvania State University United States
F300, H600
F300, H600
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).58 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
