Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Hydrogen Energy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2024
Data sources: VBN
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A two-layer energy management system for a hybrid electrical passenger ship with multi-PEM fuel cell stack

Authors: Peilin Xie; Hossein Asgharian; Josep M. Guerrero; Juan C. Vasquez; Samuel Simon Araya; Vincenzo Liso;

A two-layer energy management system for a hybrid electrical passenger ship with multi-PEM fuel cell stack

Abstract

The hybrid combination of hydrogen fuel cells (FCs) and batteries has emerged as a promising solution for efficient and eco-friendly power supply in maritime applications. Yet, ensuring high-quality and cost-effective energy supply presents challenges. Addressing these goals requires effective coordination among multiple FC stacks, batteries, and cold-ironing. Although there has been previous work focusing it, the unique maritime load characteristics, variable cruise plans, and diverse fuel cell system architectures introduce additional complexities and therefore worth to be further studied. Motivated by it, a two-layer energy management system (EMS) is presented in this paper to enhance shipping fuel efficiency. The first layer of the EMS, executed offline, optimizes day-ahead power generation plans based on the vessel's next-day cruises. To further enhance the EMS's effectiveness in dynamic real-time situations, the second layer, conducted online, dynamically adjusts power splitting decisions based on the output from the first layer and instantaneous load information. This dual-layer approach optimally exploits the maritime environment and the fuel cell features. The presented method provides valuable utility in the development of control strategies for hybrid powertrains, thereby enabling the optimization of power generation plans and dynamic adjustment of power splitting decisions in response to load variations. Through comprehensive case studies, the effectiveness of the proposed EMS is evaluated, thereby showcasing its ability to improve system performance, enhance fuel efficiency (potential fuel savings of up to 28%), and support sustainable maritime operations.

Country
Denmark
Keywords

Shipboard microgrid, Fuel cell, Energy management, PEM

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Top 10%
Top 10%
Green
hybrid