
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance evaluation of a combined variable refrigerant volume and cool thermal energy storage system for air conditioning applications

Abstract In recent years, the growing needs for fulfilling the comfort cooling requirements with efficient refrigerating and air conditioning systems have gained impetus. In this work, the performance of a combined variable refrigerant volume (VRV) and cool thermal energy storage (CTES) air conditioning (A/C) system was experimentally investigated for summer and winter design conditions. Experimental results suggest that the VRV-CTES A/C system (combined A/C system) precisely maintained the indoor temperature at 24 °C for year-round operational conditions. The PCM being applied has exhibited good latent heat capacity (~160.81 kJ kg −1 ) with congruent phase transition characteristics (~9.92 °C), even after 1000 repeated thermal cycles. Furthermore, the reduced cooling capacities and reduced combined power consumption were attributed to the improved performance of the combined A/C system. In total, this system would be beneficial in terms of accomplishing comfort cooling needs for conditioning applications without sacrificing energy efficiency.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).32 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
