

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling of a real CO2 booster installation and evaluation of control strategies for heat recovery applications in supermarkets

handle: 10044/1/72759
Modelling of a real CO2 booster installation and evaluation of control strategies for heat recovery applications in supermarkets
[EN] This paper compares and quantifies the energy, environmental and economic benefits of various control strategies recovering heat from a CO2 booster system in a supermarket for space heating with the purpose of understanding its potential for displacing natural gas fuelled boilers. A theoretical steady-state model that simulates the behaviour of the CO2 system is developed and validated against field measurements obtained from an existing refrigeration system in a food-retail building located in the United Kingdom. Five heat recovery strategies are analysed by modifying the mass flow and pressure level in the condenser. The model shows that a reduction of 48% in natural-gas consumption is feasible by the installation of a de-superheater and without applying any advanced operating strategy. However, the CO2 system can fully supply the entire space-heating requirements by adopting alternative control strategies, albeit by penalising the coefficient of performance (COP) of the compressor. Results show that the best energy strategy can reduce total consumption by 32%, while the best economic strategy can reduce costs by 6%. Findings from this work suggest that heat recovery systems can bring substantial benefits to improve the overall efficiency of energy-intensive buildings; nevertheless trade-offs need to be carefully considered and analysed on a site by site basis before embarking on such initiatives. This research was supported by funds provided via the Imperial-Sainsbury's Supermarkets Ltd. partnership. This work also was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) [grant number EP/P004709/1]. Emilio J. Sarabia gratefully acknowledges financial support from Universitat Politecnica de Valencia Fellowship. Data supporting this publication can be obtained on request from cep-lab@imperial.ac.uk
- Universitat Politècnica de València Spain
- Imperial College London United Kingdom
330, Commercial refrigeration, Transcritical R744 refrigeration, 09 Engineering, 620, Food retail, Energy saving, Heat recovery, MAQUINAS Y MOTORES TERMICOS, Mechanical Engineering & Transports
330, Commercial refrigeration, Transcritical R744 refrigeration, 09 Engineering, 620, Food retail, Energy saving, Heat recovery, MAQUINAS Y MOTORES TERMICOS, Mechanical Engineering & Transports
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 41 download downloads 150 - 41views150downloads
Data source Views Downloads RiuNet 41 150


