Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Industrial Crops and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Industrial Crops and Products
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An integrated biorefinery process to comprehensively utilize corn stalk in a MIBK/water/Al(NO3)3·9H2O biphasic system: Chemical and morphological changes

Authors: Yi-Jing Li; Xue-Fei Cao; Shao-Ni Sun; Tong-Qi Yuan; Jia-Long Wen; Xi-Luan Wang; Ling-Ping Xiao; +1 Authors

An integrated biorefinery process to comprehensively utilize corn stalk in a MIBK/water/Al(NO3)3·9H2O biphasic system: Chemical and morphological changes

Abstract

Abstract Developing an effective and efficient biorefinery process is crucial for the utilization of biomass. In this work, corn stalk was treated in a methyl isobutyl ketone (MIBK)/water biphasic system to produce furfural and treated-corn stalk residues. The results showed that Al(NO3)3·9H2O owned the best property to convert hemicelluloses into furfural in the MIBK/water system. Under the optimal conditions (0.1 M Al(NO3)3·9H2O, 160 °C and 60 min), the furfural yield could reach 52.0%, while only 2.3% hemicelluloses remained in the treated-corn stalk residues. The cellulose largely remained in the residues, and the glucose yield had an apparent increment by the subsequent enzymatic hydrolysis process (85.5%). Additionally, lignin was the main component of the residues obtained after enzymatic hydrolysis process, which has been degraded to some extent. Moreover, in the morphological aspect, the cell walls swelled evidently and the vascular bundles were broken down. The result of confocal Raman microscopy indicated that there was a severe cleavage of ether and ester linkages between hydroxycinnamic acids and hemicelluloses or lignin, and lignin largely remained during the treatment. In short, the MIBK/water/Al(NO3)3·9H2O treatment process provided an efficient integrated utilization of corn stalk to produce furfural and fermentable glucose for the bioethanol production, and the feasible biorefinery process is beneficial for the environment protection and sustainable development.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%