
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications

Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications
The Eu and Eu/Tb doped silicate glasses are good candidates for light emitting diode (LED) applications. But the optical performance of these glasses is sensitive to variations in chemical composition. In this paper we report our recent findings about the effect of addition of minor components such as B2O3, Al2O3 and CaF2 on the luminescent properties of the above-mentioned glasses. We explore the role of Eu3+ ions as a structural probe of the glasses by determining the asymmetry factor, i.e., the ratio of the emission intensity of the 5D0→7F25D0→7F2 transition to that of the 5D0→7F15D0→7F1 transition. The results show that the asymmetry factor and luminescence lifetimes of as-prepared materials are dependent on composition. White fluorescence is achieved in Eu/Tb co-doped glasses, which can be attributed to the simultaneous generation of red, green and blue wavelengths from Eu3+ and Tb3+ ions. The variation of the excitation wavelength can tune the emission spectra as well as Commission Internationale de L’Eclairage (CIE) chromaticity coordinates of Eu/Tb co-doped glasses for specific applications. The energy transfer from Tb3+ to Eu3+ ions is investigated by analyzing fluorescence spectra and decay curves.
- Aalborg University Library (AUB) Denmark
- Aalborg University Library (AUB) Denmark
- University of Angers France
- Shandong Women’s University China (People's Republic of)
- Aalborg University Denmark
[PHYS]Physics [physics], energy transfer, Glasses, LED, luminescence, [PHYS] Physics [physics]
[PHYS]Physics [physics], energy transfer, Glasses, LED, luminescence, [PHYS] Physics [physics]
9 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2022IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
