
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A novel method for carbon dioxide emission forecasting based on improved Gaussian processes regression

Abstract The fact that global warming will bring impact on immigration, agriculture and also generate human conflicts is becoming a focus in climate change topic and the forecasting of carbon dioxide emission has been attracting much attention. In this paper, we proposed an improved Gaussian processes regression method for carbon dioxide emission forecasting based on a modified PSO algorithm which can efficiently optimize the hyper parameters of covariance function in the Gaussian processes regression. Also we tested our improved PSO-GPR method with the total carbon dioxide emissions data of U.S., China and Japan in 1980–2012, and compared the prediction precision of our method with original GPR and BP Neural Networks by the data of U.S., China and Japan. The performance of our improved Gaussian processes regression method enhanced the prediction accuracy of original GPR method and is superior to other traditional forecasting method like BP Neural Networks. Furthermore, we applied PSO-GPR method in generating a prediction total carbon dioxide emissions for 2013 to 2020 and found out that China's total carbon dioxide emission will still increasing but finally at a decreasing rate and U.S. and Japan will have a good control on their amount of carbon emission in the near future. Finally, policy implications about carbon dioxide emission reduction were proposed.
- Wuhan University China (People's Republic of)
- Wuhan Polytechnic University China (People's Republic of)
- Wuhan University of Technology China (People's Republic of)
- City University of Hong Kong China (People's Republic of)
- George Washington University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).167 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
