Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Economic and environmental benefits of using textile waste for the production of thermal energy

Authors: João C. O. Matias; João C. O. Matias; Joao P. S. Catalao; Joao P. S. Catalao; Joao P. S. Catalao; Leonel J. R. Nunes; Radu Godina;

Economic and environmental benefits of using textile waste for the production of thermal energy

Abstract

Abstract There is a growing demand for alternative forms of energy that could firstly replace fossil fuels, with the environmental advantages resulting therefrom, but that could be as well economically more beneficial by allowing companies to obtain competitive advantages from the aforementioned alternative forms of energy. In this sense, the use of waste to produce thermal energy is presented as an alternative worthy of study. In this paper, an analysis is made of the use of waste from the textile industry, more precisely cotton waste, which is used as a renewable resource for the production of thermal energy. After the characterization of the waste, the energetic potential is determined comparatively to other fuels such as woodchips and wood pellets. A comparative economic assessment with other fuels is carried out. The obtained results show that the cotton briquettes have a heating value of 16.80 MJ/kg and a cost of 0.006 €/kWh when used as fuel. This predicts an annual reduction in fuel cost of 80, 75 and 70% when compared with fuel-oil, wood pellets and wood chips, respectively. Thus, the use of cotton waste could be a viable alternative, economically and environmentally, to produce thermal energy.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 1%
Top 10%
Top 1%