
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms

Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms
Abstract Accurate forecasting of renewable energy sources plays a key role in their integration into the grid. This study proposes machine learning algorithms to predict the hourly solar irradiance. Forecasting models were developed based two types of the input data. The first one uses local time, temperature, pressure, wind speed, and relative humidity as input variables of the models (N1); the second one is the time-series prediction of solar irradiance (N2) (forecasting models only use from past time-series solar radiation values to estimate the future values). For this purpose, multilayer feed-forward neural network (MLFFNN), radial basis function neural network (RBFNN), support vector regression (SVR), fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS) are developed. The results demonstrated that for the N1, SVR and MLFFNN models have the maximum performance to predict the solar irradiance with R = 0.9999 and 0.9795, respectively. For the N2, SVR, MLFFNN and ANFIS models have reported the correlation coefficient more than 0.95 for the testing dataset.
7 Research products, page 1 of 1
- 2019IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).177 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
