Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Helvia - Repositorio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coupling irrigation scheduling with solar energy production in a smart irrigation management system

Authors: Mérida García, Aida; Fernández García, Irene; Camacho Poyato, Emilio; Montesinos, Pilar; Rodríguez Díaz, Juan Antonio;

Coupling irrigation scheduling with solar energy production in a smart irrigation management system

Abstract

Abstract In recent years, pressurized pipe networks have improved the efficiency of irrigation systems while substantially increasing their energy demand. The progressive rise in energy costs makes it difficult to maintain the profitability of agricultural holdings. Moreover, global warming is a serious problem that threatens the environment worldwide and low CO2 emission processes should be promoted. To address these issues, it is necessary to look for sustainable and more profitable alternatives for the agricultural sector. One of these new alternatives is the use of renewable energies for pumping irrigation water at farm level, particularly photovoltaic energy. Nevertheless, the instability of irradiation hinders its management for stand-alone photovoltaic installations. In this work, a real-time model called the Smart Photovoltaic Irrigation Manager (SPIM) is developed to synchronize the photovoltaic power availability with the energy required to pump the irrigation requirements of different sectors of irrigation networks. SPIM consists of different modules to calculate the key management variables of the photovoltaic irrigation system: the daily irrigation requirements, the hydraulic behavior of the irrigation network, the instantaneous photovoltaic power production and the daily soil water balance. The lack of photovoltaic energy during daylight hours on any day of the irrigation season to supply the daily required amount of water is balanced with either the water stored in the soil or by extending the duration of the irrigation events in the following days when necessary. SPIM has been applied to simulate the management of photovoltaic irrigation in a real olive orchard in Southern Spain during the 2013 irrigation season. The results showed that the proper management of the photovoltaic irrigation system provided enough water to satisfy crop irrigation requirements throughout the irrigation season and avoided the emission of 1.2 tn CO2 eq using only the energy generated by solar panels.

Country
Spain
Keywords

330, Precision irrigation Energy availability Sustainable irrigation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 1%
Green