Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of artificial intelligence methods in estimation of daily global solar radiation

Authors: Ali Khosravi; Luiz Machado; R. O. Nunes; Mamdouh El Haj Assad;

Comparison of artificial intelligence methods in estimation of daily global solar radiation

Abstract

Abstract Assessment of solar potential over a location of interest is introduced as an important step for the successful planning of solar energy systems (photovoltaic or thermal). Due to the absence of meteorological stations and sophisticated solar sensors, solar data may be unavailable for every point of interest. Hence, empirical and intelligence methods are developed to estimate solar irradiance data. In this study, the idea of artificial intelligence methods is employed to predict the daily global solar radiation. The developed models are: group method of data handling (GMDH) type neural network, multilayer feed-forward neural network (MLFFNN), adaptive neuro-fuzzy inference system (ANFIS), ANFIS optimized with particle swarm optimization algorithm (ANFIS-PSO), ANFIS optimized with genetic algorithm (ANFIS-GA) and ANFIS optimized with ant colony (ANFIS-ACO). The data are collected from 12 stations in different climate zones of Iran. The input variables of the models are including month, day, average air temperature, maximum air temperature, minimum air temperature, air pressure, relative humidity, wind speed, top of atmosphere insolation, latitude and longitude. The results demonstrated that although the developed models can successfully predict the global horizontal irradiance, the GMDH model outperforms the other developed models. The values of root mean square error (RMSE), determination coefficient (R2) and mean square error (MSE) for the GMDH model were 0.2466 (kWh/m2/day), 0.9886 and 0.0608 (kWh/m2/day), respectively.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 1%
Top 10%
Top 1%