
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Only non-energy benefits from the adoption of energy efficiency measures? A novel framework

handle: 11311/1123973
Abstract Industrial energy efficiency has been widely recognized as a major contributor to the reduction of greenhouse gases emissions and improvement of industrial competitiveness. Nevertheless, a broad set of studies have pointed out the existence of barriers limiting the adoption of promising Energy Efficiency Measures (EEMs). Recently, scholars have shown the relevance of the so-called "non-energy benefits" (NEBs) coming from the adoption of EEMs for overcoming those barriers. Still, the existence of such benefits has been pointed out from specific studies and manuals for practitioners, but an overall framework describing them in terms of savings and benefits, as well as technical and management implications, is missing yet. Moreover, a considerable part of the scholars and of the practitioners just focuses on the identification and definition of the positive benefits deriving from these measures after they have been completely adopted, thus neglecting to describe the full set of both positive and negative effects occurring also during the implementation phase. Thus, starting from a literature review of scientific as well as practitioners' studies, we have proposed a novel framework and characterization of the relevant items to be considered by an industrial decision-maker when deciding whether to adopt an EEM considering both the implementation and service phases. Hence, by taking this perspective, we have tested and validated the framework and the characterization in a two-step process: firstly, considering a set of EEMs well diffused and adopted in industry; secondly, investigating benefits and losses in ad-hoc selected manufacturing companies. Finally, considerations and implications are drawn from the preliminary validation and suggestion for further research are proposed, for both industrial decision-making as well as policy-making purposes.
- Polytechnic University of Milan Italy
- University of Technology Sydney Australia
- University of Technology Sydney Australia
Characterization; Energy efficiency; Energy efficiency measure (EEM); Framework; Non-energy benefit (NEB)
Characterization; Energy efficiency; Energy efficiency measure (EEM); Framework; Non-energy benefit (NEB)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
