Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A voyage with minimal fuel consumption for cruise ships

Authors: Haoran Zhang; Zhengbing Li; Yongtu Liang; Bohong Wang; Xuan Song; Xuan Song; Jianqin Zheng; +2 Authors

A voyage with minimal fuel consumption for cruise ships

Abstract

Abstract With the rise of cruise services, energy consumption and emission of the maritime area are increasing. Due to the negative effect of greenhouse gases, many policies have been issued in the world to save energy and reduce emission. Adhering to the principle of energy conservation and emission reduction, an artificial neural network model with strong nonlinear fitting ability is introduced to explore the dynamic sailing data, and predict the fuel consumption for cruise ships based on automatic identification system data. Considering the constraints of station arrival time and the uncertainty of sailing speed and load during sailing, which can obtain the change rule from the historical voyage data, the objective function is to minimize the fuel consumption of a voyage. The established artificial neural network model is embedded into these four improved particle swarm optimization algorithms (GPSO, LPSO, MCPSO and SIPSO) with global search capability to optimize the sailing speed between stations, achieving the economic and environmental protection of a voyage. This method is applied to a real case study of Norwegian waters. By comparing the optimization results of these four algorithms, the total fuel consumption is potential to reduce from 97.4 t to 86.6 t of a voyage with the help of multi-swarm cooperative particle swarm optimization algorithm when its inertia weight is 0.7. It demonstrates that the method can be used as a tool to plan the sailing speed of cruise ships in advance.

Country
China (People's Republic of)
Keywords

Artificial neural network, Improved particle swarm optimization algorithm, Uncertainty, 620, Fuel consumption

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 1%
Top 10%
Top 1%