Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls

Authors: Renato Castiglia Feitosa; Sara Wilkinson;

Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls

Abstract

Abstract New and retrofitted green roofs and green walls (GRGW) represent an opportunity to attenuate excessive heat produced in increasingly densely developed urban environments. This paper reports on the results of an original experiment in Sydney Australia in 2016 to evaluate seasonally the heat stress attenuation through green roofs and green walls. Data was collected from mid-summer 2016 (January) to early summer (November 2016) the following season. Two scaled-down structures representing a considerable percentage of housing stock were used to compare heat attenuation in a traditional design compared to a structure covered with a lightweight GRGW on two elevations. Importantly, the results inform our knowledge and understanding of the fluctuations in GRGW performance over an extended period. The combination of relative humidity and temperature plays an important role in establishing heat stress levels in terms of Wet Bulb Globe Temperature (WBGT). The higher levels of WBGT occurred in summer, whereas the lower levels occurred in winter. The WBGT of both prototypes was similar during winter, showing no significant relevance of GRGW for heating an indoor environment. However, during the summer the vegetation had a major role in reducing WBGT. Heat stress is seasonally evaluated according to the percentage of the time, which the thresholds for different metabolic activities are reached. During warm conditions, GRGW attenuated heat stress and the associated health-related risks substantially.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%