Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: Bioenergy, emission and ash deposition improvements

Authors: Fatih Evrendilek; Fatih Evrendilek; Jingyong Liu; Yueyao Song; Musa Buyukada; Youping Yan; Jinwen Hu;

Catalytic combustions of two bamboo residues with sludge ash, CaO, and Fe2O3: Bioenergy, emission and ash deposition improvements

Abstract

Abstract The catalytic combustions of bamboo leaves (BL) and branches (BB) with textile dyeing sludge ash (SA), Fe2O3, and CaO were qualitatively analyzed using thermogravimetric and Fourier transform infrared spectroscopy analyses, and thermodynamic equilibrium simulations. The catalysts (Fe2O3 > SA > CaO) exerted a more pronounced effect in the char combustion (third) stage and enhanced the volatiles and comprehensive combustion indices with 40 °C/min. The catalysts (CaO > SA > Fe2O3) reduced C- and N-containing gas emissions in the devolatilization (second) stage. CaO elevated the N-containing gas emission in the third stage, whereas Fe2O3, and SA inhibited the formation of NO precursors. BB presented a higher risk of slagging than did BL, while the improved empirical indices of the ash deposition pointed to CaO as the optimal catalyst. Our simulations showed the final ash components of BL and BB were mainly as SiO2 and K2Si4O9. The addition of CaO alone helped to form a high-melting point Ca-silicate. Although the addition of Fe2O3 had no effect on the ash conversion, SA reduced the formation of K-silicate in the ash. The catalysts (CaO > SA > Fe2O3) reduced the activation energy. Overall, the catalytic combustions improved the bioenergy and the N-containing gas emissions. SA as a Fe and Ca-rich industrial waste enhanced the combustion performance in terms of reductions in waste streams, gas emissions, and ash deposition. Our results supplied new insights into the efficient and clean bioenergy production of bamboo residues, and the waste utilization of SA.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%