Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cleaner P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cleaner Production
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Indian mustard bioproducts dry-purification with natural adsorbents - A biorefinery for a green circular economy

Authors: Graeme Rapp; Victor Garcia-Montoto; Brice Bouyssiere; Sophie Thiebaud-Roux; Alejandro Montoya; Richard Trethowan; Peter Pratt; +3 Authors

Indian mustard bioproducts dry-purification with natural adsorbents - A biorefinery for a green circular economy

Abstract

Abstract Processes based on homogeneous catalysts are the most widely used for industrial production of fatty acid derivatives, despite catalyst loss in aqueous effluents during the wet-purification stage. In this work, dry-purification of the crude bioproducts; ethyl biodiesel and biolubricants, derived from Indian mustard was conducted using various natural mineral (clay) and organic (plant issue) adsorbents to evaluate operating conditions including temperature, contact time and number of treatment cycles and to define the optimal procedure. Adsorbent characterization was determined by average particle size assessed using laser granulometry, morphology and elemental chemical composition measured by scanning electron spectroscopy with microanalysis using energy dispersive X-ray spectroscopy, chemical structure determination based on Fourier Transform InfraRed spectroscopy and porosity and specific area assessed using carbon dioxide or nitrogen adsorption. The quality of the biofuel and biolubricants, before and after dry-purification on the above adsorbents, was evaluated using different methods including Karl Fischer titration, gas chromatography with a flame ionization detector and inductively coupled plasma-atomic emission spectroscopy. Montmorillonite clay and finely ground Indian mustard stems (particle size of 100–710 μm) without further pyrolysis or carbonization treatment were found to be the best adsorbents. Combined with the selected dry-purification procedure (35–45 °C, 20 min, single treatment cycle), most impurities including residual glycerides, free glycerin, water, catalysts and metals were removed from the resultant ethyl biodiesel thus meeting the basic biofuel specifications of acid value, color, density, viscosity, flash point, pour point, cloud point, cold filter plugging point, higher heating value, and oxidation stability. Further purification of biolubricants was required using bubble-washing with citric acid and vacuum distillation to obtain a product with acceptable density, viscosity and color. This work highlights the potential of a biorefinery system focused on Indian mustard contributing to a green circular economy, that would benefit both farmers and consumers in the respect of environment; farmers would gain in energy security and flexibility by biofuel, biolubricant and other bioproducts on-farm production, while ensuring healthy food security and offering job opportunities, the whole with reduced chemical and energy inputs and minimized waste effluents.

Keywords

Indian mustard, Limited environmental footprint, Biorefinery concept, Ethyl biodiesel, Low cost production, Dry-purification, [SPI]Engineering Sciences [physics], [CHIM.GENI]Chemical Sciences/Chemical engineering, Biolubricant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
bronze