
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook

Abstract Globally, the research on battery technology in electric vehicle applications is advancing tremendously to address the carbon emissions and global warming issues. The effectiveness of electric vehicles depends on the accurate assessment of key parameters as well as proper functionality and diagnosis of the battery storage system. However, poor monitoring and safety strategies of the battery storage system can lead to critical issues such as battery overcharging, over-discharging, overheating, cell unbalancing, thermal runaway, and fire hazards. To address these concerns, an effective battery management system plays a crucial role in enhancing battery performance including precise monitoring, charging-discharging control, heat management, battery safety, and protection. The goal of this paper is to deliver a comprehensive review of different intelligent approaches and control schemes of the battery management system in electric vehicle applications. In line with that, the review evaluates the intelligent algorithms in battery state estimation concerning their features, structure, configuration, accuracy, advantages, and disadvantages. Moreover, the review explores the various controllers in battery heating, cooling, equalization, and protection highlighting categories, characteristics, targets, achievements, benefits, and shortcomings. The key issues and challenges in terms of computation complexity, execution problems along with various internal and external factors are identified. Finally, future opportunities and directions are delivered to design an efficient intelligent algorithm and controller toward the development of an advanced battery management system for future sustainable electric vehicle applications.
- Universiti Malaysia Terengganu Malaysia
- Asian Institute of Technology Thailand
- University of Technology Russian Federation
- Universiti Tenaga Nasional Malaysia
- National University of Malaysia Malaysia
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).245 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
