Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Environmental Management
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings

Authors: Touceda-González , M.; Álvarez-López , V.; Prieto-Fernández , Á.; Rodríguez-Garrido , B.; Trasar-Cepeda , C.; Mench , Michel; Puschenreiter , M.; +3 Authors

Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings

Abstract

(Aided) phytostabilisation has been proposed as a suitable technique to decrease the environmental risks associated with metal(loid)-enriched mine tailings. Field scale evaluations are needed for demonstrating their effectiveness in the medium- to long-term. A field trial was implemented in spring 2011 in Cu-rich mine tailings in the NW of Spain. The tailings were amended with composted municipal solid wastes and planted with Salix spp., Populus nigra L. or Agrostis capillaris L. cv. Highland. Plant growth, nutritive status and metal accumulation, and soil physico- and bio-chemical properties, were monitored over three years (four years for plant growth). The total bacterial community, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae were studied by DGGE of 16s rDNA fragments. Compost amendment improved soil properties such as pH, CEC and fertility, and decreased soil Cu availability, leading to the establishment of a healthy vegetation cover. Both compost-amendment and plant root activity stimulated soil enzyme activities and induced important shifts in the bacterial community structure over time. The woody plant, S. viminalis, and the grassy species, A. capillaris, showed the best results in terms of plant growth and biomass production. The beneficial effects of the phytostabilisation process were maintained at least three years after treatment.

Country
France
Keywords

bacterial community structure, trace elements, déchet organique, espagne, Solid Waste, Plant Roots, short rotation coppice (SRC), Soil, aided phytostabilization, salix, Soil Pollutants, Biomass, Soil Microbiology, organic waste, pollution d'origine minière, élément trace, organic wastes, trace element, Salix, cuivre, Biodegradation, Environmental, Populus, enzyme activities, Microbial Consortia, Agrostis, Mining, phytostabilisation, agrostis capillaris, Species Specificity, mine spoils, black poplar, [ SDE.BE ] Environmental Sciences/Biodiversity and Ecology, Bacteria, [SDE.ES]Environmental Sciences/Environmental and Society, Spain, copper, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, populus nigra, [ SDE.ES ] Environmental Sciences/Environmental and Society, Copper

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 8
  • 8
    views
    Data sourceViewsDownloads
    Oskar Bordeaux80
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
98
Top 1%
Top 10%
Top 1%
8
Green
bronze