
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of a cascade artificial neural network for modeling and optimization of process parameters in co-composting of cattle manure and municipal solid waste

pmid: 35724572
The present study was carried out to improve, test, and validate the Cascade Forward Neural Network (CFNN) for co-composting of municipal solid waste (MSW) and cattle manure (CM). Composting was performed in vessel pilot-scale reactors with different CM rates for 105 days. The CFNN used 5 input variables containing CM and MSW mixture combinations, and 1 output for each of the compost quality parameters. The CFNN results were compared with Response Surface Methodology (RSM) and Feed Forward Neural Network (FFNN) results. Multi-objective optimization process using Genetic Algorithm (GA), the total desirability, which has a much better value than the RSM, was obtained as 0.4455 and the CM ratio and processing time were determined as approximately 23.39% and 104.86 days, respectively. It is concluded that CFNN is a unique modeling tool, exhibiting superior modeling and prediction performance in MSW and compost modeling for CM.
- Marmara University Turkey
- Ondokuz Mayıs University Turkey
- Giresun University Turkey
- Marmara University Turkey
- Ondokuz Mayıs University Turkey
Manure, Soil, Composting, Animals, Cattle, Neural Networks, Computer, Solid Waste
Manure, Soil, Composting, Animals, Cattle, Neural Networks, Computer, Solid Waste
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).23 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
