Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hazardous Materials
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation

Authors: Maurizio Petruccioli; Zdena Křesinová; Alessandro D’Annibale; Stefano Covino; Monika Čvančarová; Monika Čvančarová; Tatiana Stella; +2 Authors

Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation

Abstract

Aim of this work was to investigate the ability of Lentinus (Panus) tigrinus to degrade and detoxify a chlorobenzoate (CBA) mixture composed of mono-, di- and tri-chlorinated isomers. The degradation process was investigated as a function of both the growing medium (i.e. low N Kirk's and malt extract-glucose medium) and cultivation conditions (i.e. stationary and shaken cultures). The majority of CBAs were quantitatively degraded within the early 15 d from spiking with the notable exception of the double ortho-chlorinated compounds, 2,6-di-, 2,3,6-tri- and 2,4,6-tri-CBA. Analysis of the degradation intermediates indicated the occurrence of side chain reduction, hydroxylation and methylation reactions. Although CBAs stimulated laccase production, in vitro experiments with a purified L. tigrinus laccase isoenzyme demonstrated its inability to participate in the initial attack on CBAs even in the presence of redox mediators; similar results were found with a Mn-peroxidase isoenzyme. Conversely, prompt degradation was observed upon 1h incubation of CBAs with a purified microsomal fraction containing cytochrome P-450 monooxygenase. The nature of some reaction products (i.e. hydroxylated derivatives), the dependency of the reaction on NADPH and its susceptibility to either CO or piperonyl butoxide inhibition confirmed the involvement of L. tigrinus cytochrome P-450 in the early steps of CBA degradation.

Country
Italy
Related Organizations
Keywords

Luminescence, Biodegradation; Chlorobenzoic acid; Cytochrome P-450 monooxygenase; Lentinus tigrinus; Ligninolytic enzymes; Aliivibrio fischeri; Biodegradation, Environmental; Biomass; Chlorine; Chlorobenzoates; Culture Media; Cytochrome P-450 Enzyme System; Laccase; Lentinula; Luminescence; Microsomes; Oxygen; Peroxidases; Substrate Specificity; Toxicity Tests; Water Pollutants, Chemical; Water Purification; Health, Toxicology and Mutagenesis; Pollution; Waste Management and Disposal; Environmental Chemistry; Environmental Engineering, Laccase, Lentinula, Aliivibrio fischeri, Culture Media, Substrate Specificity, Water Purification, Chlorobenzoates, Oxygen, Biodegradation, Environmental, Cytochrome P-450 Enzyme System, Peroxidases, Microsomes, Toxicity Tests, Biomass, Chlorine, Water Pollutants, Chemical

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Related to Research communities
Energy Research