Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Hazardous...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Hazardous Materials
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Yeast biomass ornamented macro-hierarchical chitin nanofiber aerogel for enhanced adsorption of cadmium(II) ions

Authors: Iqra, Shahzadi; Yang, Wu; Heng, Lin; Jing, Huang; Ze, Zhao; Chaoji, Chen; Xiaowen, Shi; +1 Authors

Yeast biomass ornamented macro-hierarchical chitin nanofiber aerogel for enhanced adsorption of cadmium(II) ions

Abstract

There is an urgent need to develop sustainable, renewable, and environment-friendly adsorbents to rectify heavy metals from water. In the current study, a green hybrid aerogel was prepared by immobilizing yeast on chitin nanofibers in the presence of a chitosan interacting substrate. A cryo-freezing technique was employed to construct a 3D honeycomb architecture comprising the hybrid aerogel with excellent reversible compressibility and abundant water transportation pathways for the accelerated diffusion of Cadmium(II) (Cd(II)) solution. This 3D hybrid aerogel structure offered copious binding sites to accelerate the Cd(II) adsorption. Moreover, the addition of yeast biomass amplified the adsorption capacity and reversible wet compression of hybrid aerogel. The monolayer chemisorption mechanism explored by Langmuir and pseudo-second-order kinetic exhibited a maximum adsorption capacity of 127.5 mg/g. The hybrid aerogel demonstrated higher compatibility for Cd(II) ions as compared to the other coexisted ions in wastewater and manifested a better regeneration potential following four consecutive sorption-desorption cycles. Complexation, electrostatic attraction, ion-exchange and pore entrapment were perhaps major mechanisms involved in the removal of Cd(II) revealed by XPS and FT-IR. This study unveiled a novel avenue for efficient green-synthesized hybrid aerogel that may be sustainably used as an excellent purifying agent for Cd(II) removal from wastewater.

Related Organizations
Keywords

Ions, Nanofibers, Water, Chitin, Saccharomyces cerevisiae, Wastewater, Kinetics, Spectroscopy, Fourier Transform Infrared, Adsorption, Biomass, Water Pollutants, Chemical, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 1%