Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Loss Prevention in the Process Industries
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of Risk-Based Inspection and Maintenance procedures for an oil refinery

Authors: Bertolini M.; Bevilacqua M.; Ciarapica F.E.; Giacchetta G.;

Development of Risk-Based Inspection and Maintenance procedures for an oil refinery

Abstract

Abstract The management of failure analysis has a strategic importance within a refinery from the organizational, engineering and economic point of view. The determination of an algorithm, that allows a methodical and as far as possible automatic approach to management of failure data, can make substantial improvements in the organization of work and in the decision-making processes. A panel of expert, made up of academicians and refinery operators, was formed in order to develop a Risk-Based Inspection and Maintenance (RBI&M) procedure. RBI&M procedure developed comprises six modules: identification of the scope, functional analysis, risk assessment, risk evaluation, operation selection and planning, J-factor computation and operation realization. Taking into consideration historical data regarding Near Accidents, Operating Drawbacks, Occupational and Environmental Accidents occurred in refinery over the last years the panel of expert defined a risk matrix in order to evaluate the risk associated to critical events and maintenance activities. Five probability classes and five severity categories, that take into account four impact categories (Health and Safety, Environmental, Economic and Reputation), have been defined. This paper reports the application of the RBI&M method to two specific stages in the maintenance activities of the refinery, i.e. the oil refinery turnaround and work orders management. The panel of expert developed heuristic methods in order to apply RBI&M procedure to the two cases allowing the refinery to minimize the overall risk taking into consideration the limits in term of time and budget (in turnaround case) and of human resources (in the management of work orders). The results have highlighted a clear improvement in the indices which measure the quality of maintenance.

Country
Italy
Keywords

330, Maintenance, Work order management, 650, 620, Risk management; Safety management; Maintenance; Work order management, Risk management, Safety management

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 108
  • 108
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
103
Top 1%
Top 10%
Top 10%
108