Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Pharmaceutical and Biomedical Analysis
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of a simple and sensitive liquid chromatography triple quadrupole mass spectrometry (LC–MS/MS) method for the determination of cannabidiol (CBD), Δ 9 -tetrahydrocannabinol (THC) and its metabolites in rat whole blood after oral administration of a single high dose of CBD

Authors: Federica Palazzoli; Cinzia Citti; Manuela Licata; Antonietta Vilella; Letizia Manca; Michele Zoli; Maria Angela Vandelli; +2 Authors

Development of a simple and sensitive liquid chromatography triple quadrupole mass spectrometry (LC–MS/MS) method for the determination of cannabidiol (CBD), Δ 9 -tetrahydrocannabinol (THC) and its metabolites in rat whole blood after oral administration of a single high dose of CBD

Abstract

The investigation of the possible conversion of cannabidiol (CBD) into Δ9-tetrahydrocannabinol (THC) in vivo after oral administration of CBD is reported herein since recent publications suggested a rapid conversion in simulated gastric fluid. To this end, single high dose of CBD (50mg/kg) was administered orally to rats and their blood was collected after 3 and 6h. A highly sensitive and selective LC-MS/MS method was developed and fully validated in compliance with the Scientific Working Group of Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. This method also involved the optimization of cannabinoids and their metabolites extraction in order to remove co-eluting phospholipids and increase the sensitivity of the MS detection. Neither THC nor its metabolites were detected in rat whole blood after 3 or 6h from CBD administration. After oral administration, the amount of CBD dissolved in olive oil was higher than that absorbed from an ethanolic solution. This could be explained by the protection of lipid excipients towards CBD from acidic gastric juice.

Country
Italy
Keywords

Male, Time Factors, Ethanol, Administration, Oral, Cannabidiol; Cannabinoids extraction; Liquid chromatography; Mass spectrometry; Δ9-Tetrahydrocannabinol; Administration, Oral; Animals; Cannabidiol; Chromatography, Liquid; Dronabinol; Ethanol; Excipients; Male; Olive Oil; Rats; Rats, Sprague-Dawley; Tandem Mass Spectrometry; Time Factors; Analytical Chemistry; 3003; Drug Discovery3003 Pharmaceutical Science; Spectroscopy; Clinical Biochemistry, Rats, Excipients, Rats, Sprague-Dawley, Tandem Mass Spectrometry, Animals, Cannabidiol, Dronabinol, Olive Oil, Chromatography, Liquid

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research