
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy

Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy
Retaining optimum acid-contents in membranes and electrodes is critical to maintaining the performance and durability of acid-doped high-temperature (HT) polymer-electrolyte-membrane fuel cells (PEMFCs). Since the distribution of acids is influenced by the operating and compression conditions of the stack, there is great demand for understanding the behavior of individual membrane-electrode-assemblies (MEAs) while operating the cells in a stack. In this study, an in-situ diagnosis method using electrochemical impedance spectroscopy (EIS) is implemented during the durability test of an HT-PEMFC stack. Adopting a lumped equivalent-circuit model, the specific parameters are obtained from EIS results, and the changes of the values are compared with the performance loss of individual MEA. From this analysis it can be concluded that the main cause of performance degradation of the stack is due to the loss of electrolytes in the cathode, which leads to an increase in the proton transport resistance of cathode catalyst layers. In addition to the proton transport loss in the cathode, the charge transfer resistance of the oxygen reduction reaction has contributed to the performance decay of the stack. The causes of the increase in the cathode charge transfer resistance for each cell of the stack are discussed.
4 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).57 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
