Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells

Authors: C. P. Aiken; Gaurav Jain; N. N. Sinha; Hui Ye; J. R. Dahn; Remi Petibon; S. Trussler; +2 Authors

Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells

Abstract

Abstract The effect of various electrolyte additives and additive combinations added to a 1 M LiPF6 EC:EMC electrolyte on the positive and negative electrodes surface of 1 year old wound LiCoO2/graphite cells and Li[Ni0.4Mn0.4Co0.2])O2/graphite cells was studied using electrochemical impedance spectroscopy (EIS) on symmetric cells. The additives tested were: vinylene carbonate (VC), trimethoxyboroxine (TMOBX), fluoroethylene carbonate (FEC), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and H2O alone or in combination. In general, compared to control electrolyte, the additives tested reduced the impedance of the positive electrode and increased the impedance of the negative electrode with the exception of LiTFSI in Li[Ni0.4Mn0.4Co0.2]O2/graphite wound cells. Higher charge voltage led to higher positive electrode impedance, with the exception of 2%VC + 2% FEC, and 2% LiTFSI. In some cases, some additives when mixed with another controlled the formation of the SEI at one electrode, and shared the formation of the SEI at one electrode when mixed with a different additive.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%