Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis

Authors: Klaus Wippermann; Christoph Rakousky; Uwe Reimer; Marcelo Carmo; Detlef Stolten; Detlef Stolten; Wiebke Lueke;

An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis

Abstract

Abstract The durability of a polymer electrolyte membrane (PEM) water electrolysis single cell, assembled with regular porous transport layers (PTLs) is investigated for just over 1000 h. We observe a significant degradation rate of 194 μV h−1 and conclude that 78% of the detectable degradation can be explained by an increase in ohmic resistance, arising from the anodic Ti-PTL. Analysis of the polarization curves also indicates a decrease in the anodic exchange current density, j0, that results from the over-time contamination of the anode with Ti species. Furthermore, the average Pt-cathode particle size increases during the test, but we do not believe this phenomenon makes a significant contribution to increased cell voltages. To validate the anode Ti-PTL as a crucial source of increasing resistance, a second cell is assembled using Pt-coated Ti-PTLs. This yields a substantially reduced degradation rate of only 12 μV h−1, indicating that a non-corroding anode PTL is vital for PEM electrolyzers. It is our hope that forthcoming tailored PTLs will not only contribute to fast progress on cost-efficient stacks, but also to its long-term application of PEM electrolyzers involved in industrial processes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    274
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
274
Top 1%
Top 1%
Top 1%