
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers

Abstract For the first time, pore network modelling is applied to polymer electrolyte membrane (PEM) electrolyzers. Realistic sintered titanium powder-based porous transport layers (PTLs) are generated via stochastic modelling, and we determine the influence of PTL-catalyst coated membrane (CCM) contact, pore and throat sizes, and porosity on two-phase transport. The PTL-CCM interfaces exhibit large open pore spaces, which are catastrophic for effective reactant transport due to the localized preferential accumulation of oxygen gas. As expected, increasing the sizes of the pores and throats results in higher oxygen gas saturations; however, we concurrently observe a surprisingly dominant mass transport effect whereby liquid water permeability is enhanced. The numerically generated PTLs are further tailored for enhanced mass transport by imposing a porosity gradient. By increasing the porosity from the PTL-CCM interface to the PTL-flow field interface, lower gas saturations and higher liquid water permeabilities are observed. With the opposite porosity gradient, the majority of pores adjacent to the high porosity CCM region become invaded with oxygen gas. We recommend a backing layer (microporous layer) at the CCM-PTL interface that improves the contact and permeation of product oxygen away from the CCM, thereby enhancing the performance of the PEM electrolyzer.
- University of Toronto Canada
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
