
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Polytetrafluorethylene effects on liquid water flowing through the gas diffusion layer of polymer electrolyte membrane fuel cells

Abstract A three-dimensional (3D) lattice Boltzmann model is applied to simulations of the dynamic process of liquid water moving through the gas diffusion layer, processed by covering the fibers with polytetrafluorethylene (PTFE), in polymer electrolyte membrane fuel cells. The PTFE content and two through-plane distribution styles were analyzed regarding their impact on the liquid water's flow behavior. The total saturation curves show that the water's breakthrough times are affected by these two factors. Different characteristic shapes of local saturation curves are observed with different types of PTFE distribution. The dynamic elevation plots of water fronts show that certain PTFE distribution styles can be of advantage to fuel cell efficiency.
- RWTH Aachen University Germany
- Helmholtz Association of German Research Centres Germany
- Forschungszentrum Jülich Germany
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
