Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Power Sources
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental analysis of recoverable performance loss induced by platinum oxide formation at the polymer electrolyte membrane fuel cell cathode

Authors: Radenka Maric; Radenka Maric; Haoran Yu; Piotr Zelenay; Andrea Baricci; Andrea Casalegno; Thomas Jahnke; +2 Authors

Experimental analysis of recoverable performance loss induced by platinum oxide formation at the polymer electrolyte membrane fuel cell cathode

Abstract

Abstract Unrecoverable and recoverable performance degradation is a major issue hindering commercialization of polymer electrolyte membrane fuel cells. The recoverable losses, caused for example by a contaminant adsorption, catalyst flooding, ionomer dehydration, and platinum oxidation, can be reversed, usually following an interruption in the cell operation. In order to elucidate the link between platinum oxidation and recoverable performance loss, three MEAs were characterized in this work. They involved catalysts with different nanoparticle sizes and loadings tested using a combination of the electrochemical impedance spectroscopy, constant-voltage, constant-current and potential controlled techniques, before and after electrocatalyst aging. Experimental results indicate that a decrease in specific activity over time is not affected by nanoparticle size or aging. Nevertheless, linear sweep voltammetry, which is adopted to reduce platinum oxide and as diagnostics for oxide composition, reveals that a change in composition is observed in correlation with catalyst morphology and catalyst aging. The formation of the platinum oxide associated with the peak at 0.61 VRHE in the voltammetry is found to decrease the catalyst's specific activity more than oxides associated with peaks at higher potentials. This indicates that the recoverable performance loss due to the platinum oxide formation depends on the oxide composition.

Country
Italy
Keywords

Aging; Platinum oxide; Polymer electrolyte membrane fuel cell (PEMFC); Recoverable performance loss

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Green