
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
From phone use to speeding and driving under influence: Identifying clusters of driving risk behaviors as an opportunity for targeted interventions

pmid: 33218750
Identifying the profile of risky behaviors among drivers is central to propose effective interventions. Due to the multidimensional and overlapping aspects of risky driving behaviors, cluster analysis can provide additional insights in order to identify specific subgroups of risk. This study aimed to identify clusters of driving risk behavior (DRB) among car drivers, and to verify intra-cluster differences concerning clinical and sociodemographic variables. We approached a total of 12,231 drivers and we included 6392 car drivers. A cluster algorithm was used to identify groups of car drivers in relation to the DRB: driving without a seat belt (SB), exceeding the speed limit (SPD), using a cell phone while driving (CELL), and driving after drinking alcohol (DUI). The algorithm classified drivers within five different DRB profiles. In cluster 1 (20.1%), subjects with a history of CELL. In cluster 2 (41.4%), drivers presented no DRB. In cluster 3 (9.3%), all drivers presented SPD. In cluster 4 (12.5%), drivers presented all DRB. In cluster 5 (16.6%), all drivers presented DUI. Clusters with DUI-related offenses (4 and 5) comprised more men (81.9 and 78.8%, respectively) than the overall sample (63.4%), with more binge drinking (50.9 and 45.7%) and drug use in the previous year (13.5 and 8.6%). Cluster 1 had a high years of education (14.4 ± 3.4) and the highest personal income (Md = 3000 IQR [2000-5000]). Cluster 2 had older drivers (46.6 ± 15), and fewer bingers (10.9%). Cluster 4 had the youngest drivers (34.4 ± 11.4) of all groups. Besides reinforcing previous literature data, our study identified five unprecedented clusters with different profiles of drivers regarding DRB. We identified an original and heterogeneous group of drivers with only CELL misuse, as well as other significant differences among clusters. Hence, our findings show that targeted interventions must be developed for each subgroup in order to effectively produce safe behavior in traffic.
- University of Melbourne Australia
- University of Puerto Rico at Carolina United States
- Hospital de Clínicas de Porto Alegre Brazil
- Federal University of Rio de Janeiro Brazil
- Federal University Foundation of Rio Grande Brazil
Male, Automobile Driving, Alcohol Drinking, Ethanol, Accidents, Traffic, Risk-Taking, Humans
Male, Automobile Driving, Alcohol Drinking, Ethanol, Accidents, Traffic, Risk-Taking, Humans
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
