Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Biology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat tolerance and gene expression responses to heat stress in threespine sticklebacks from ecologically divergent environments

Authors: Karin Brydsø Dammark; Anne-Laure Ferchaud; Michael M. Hansen; Jesper G. Sørensen;

Heat tolerance and gene expression responses to heat stress in threespine sticklebacks from ecologically divergent environments

Abstract

Ectothermic animals like fishes are extremely dependent on temperature, as they are not able to change body temperature physiologically. When populations are found in isolated water bodies such as small lakes they will have to respond to stressful high temperatures by behavioral avoidance, phenotypic plasticity or microevolutionary change. We analyzed threespine sticklebacks from two large and two small lakes, representing different isolated populations. We determined maximum critical thermal limits (CTmax) and the associated gene expression responses in three heat shock (hsp60, hsp70, hsp90) and two key metabolic (idh2, fbp2) genes at ecologically relevant moderate heat stress (26 °C) as well as at the critical thermal limit (CTmax). CTmax showed slight variation across populations with no strong indication of local adaptation. Likewise, there was no strong evidence for local adaptation at the level of gene expression. The expression of the metabolic genes indicated a shift from aerobic towards anaerobic energy production with extreme heat stress. We conclude that threespine sticklebacks do not show severe stress during the warmest temperatures they are likely to encounter during current temperature regimes in Denmark, and following this show no sign of local adaptation even in small, isolated water bodies.

Related Organizations
Keywords

Fish Proteins, Male, Thermotolerance, Hot Temperature, Denmark, Gene Expression, Heat Stress Disorders, ATLANTIC SALMON, GASTEROSTEUS-ACULEATUS, Climate change, Animals, Heat-Shock Proteins, EVOLUTIONARY RESPONSES, CLIMATE-CHANGE, FRESH-WATER, OXYGEN LIMITATION, CTmax, Isocitrate Dehydrogenase, Smegmamorpha, QPCR, Fructose-Bisphosphatase, ADAPTIVE EVOLUTION, Thermal adaptation, FUNDULUS-HETEROCLITUS, Lakes, THERMAL TOLERANCE, Female, LIFE-HISTORY TRAITS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Related to Research communities
Energy Research