Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of the Taiwa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the Taiwan Institute of Chemical Engineers
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage

Authors: Tumirah Khadiran; Tumirah Khadiran; Rafeadah Rusli; Mohd Zobir Hussein; Zulkarnain Zainal;

Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage

Abstract

Abstract A shape-stabilised n-octadecane/activated carbon nanocomposite was successfully prepared using a one-step impregnation method. Activated carbon (AC) was used as an inorganic framework material, and n-octadecane was used as a phase change material (PCM) for thermal energy storage. The mass loading percentage of n-octadecane in the PCM nanocomposites which was determined using DSC is 42.5 wt.%, due to the excellent adsorption ability of AC. Field Emission Scanning Electron Microscope (FESEM) images and nitrogen adsorption–desorption results for the nanocomposites PCM indicate that n-octadecane was uniformly adsorbed into the pores of AC. The porous networks of the AC prevented leakage of the melted n-octadecane during the phase change processes. The performance of the n-octadecane/AC nanocomposites as a thermal energy storage material for building applications was examined by incorporation of the nanocomposite with gypsum to function as a panel board. The results indicate that the incorporation of the n-octadecane/AC nanocomposites in gypsum board lowered the indoor temperature fluctuation of the buildings, which could reduce energy consumption.

Country
Malaysia
Keywords

620

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 10%