Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ UNSWorksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Environmental Research
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Carry over effects of nutrient addition on the recovery of an invasive seaweed from the winter die-back

Authors: Marc Uyà; Marc Uyà; Paul E. Gribben; Caterina Nuccio; Giovanna Mori; Fabio Bulleri; Elena Maggi;

Carry over effects of nutrient addition on the recovery of an invasive seaweed from the winter die-back

Abstract

Nutrient enrichment of coastal waters can enhance the invasibility and regrowth of non-native species. The invasive alga Caulerpa cylindracea has two distinct phases: a well-studied fast-growing summer phase, and a winter latent phase. To investigate the effects of nutrient enrichment on the regrowth of the seaweed after the winter resting-phase, a manipulative experiment was carried out in intertidal rockpools in the North-western Mediterranean. Nutrients were supplied under different temporal regimes: press (constant release from January to May), winter pulse (January to March) and spring pulse (March to May). Independently from the temporal characteristics of their addition, nutrients accelerated the re-growth of C. cylindracea after the winter die-back, resulting in increased percentage covers at the peak of the growing season. Nutrient addition did not influence the number and length of fronds and the biomass. Native components of the algal community did not respond to nutrient additions. Our results show that nutrient supply can favour the spread of C. cylindracea even when occurring at a time of the year at which the seaweed is not actively growing.

Countries
Italy, Australia
Keywords

570, Nitrogen, Nutrient enrichment, Chemical, Growth, 41 Environmental Sciences, anzsrc-for: 41 Environmental Sciences, anzsrc-for: 3103 Ecology, anzsrc-for: 34 Chemical sciences, Carry-over effects, Nutrient enrichment, Pulse versus press disturbance, Invasive species, Seaweeds, Caulerpa cylindracea, Growth, Biomass, Rockpools, Carry-over effects, Caulerpa, Water Pollutants, Biomass, anzsrc-for: 31 Biological Sciences, anzsrc-for: 03 Chemical Sciences, Ecosystem, Invasive species, 3103 Ecology, anzsrc-for: 3108 Plant Biology, anzsrc-for: 05 Environmental Sciences, Phosphorus, Seaweeds, Caulerpa cylindracea, Seaweed, 3108 Plant Biology, Pulse versus press disturbance, Biomass; Carry-over effects; Caulerpa cylindracea; Growth; Invasive species; Nutrient enrichment; Pulse versus press disturbance; Rockpools; Seaweeds; Caulerpa; Ecosystem; Environmental Monitoring; Nitrogen; Phosphorus; Seasons; Seaweed; Water Pollutants, Chemical; Oceanography; Aquatic Science; Pollution, Rockpools, anzsrc-for: 06 Biological Sciences, Seasons, Water Pollutants, Chemical, 31 Biological Sciences, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green