Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aberdeen University ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Marine Environmental Research
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The functional diversity of fish assemblages in the vicinity of oil and gas pipelines compared to nearby natural reef and soft sediment habitats

Authors: Alethea S. Madgett; Travis S. Elsdon; Michael J. Marnane; Karl D. Schramm; Euan S. Harvey;

The functional diversity of fish assemblages in the vicinity of oil and gas pipelines compared to nearby natural reef and soft sediment habitats

Abstract

As the offshore hydrocarbon industry matures and decommissioning activities are expected to increase, there is a requirement to assess the environmental consequences of different pipeline decommissioning options. Previous research on fish and other ecological components associated with pipelines has focused on examining species richness, abundance and biomass surrounding structures. The extent to which subsea pipelines mimic or alter ecosystem function compared with nearby natural habitats is unknown. We analyse differences in fish assemblage biological trait composition and the functional diversity at exposed shallow-water subsea pipelines, nearby natural reef and soft sediment habitats, using mini stereo-video remotely operated vehicles (ROV). Habitats significantly differed in assemblage trait composition. The pipeline and reef habitats shared a more similar functional composition and had the presence of key functional groups required for the development and maintenance of healthy coral reef systems. The reef habitat had the greatest functional diversity, followed by the pipeline habitat and soft sediment habitat respectively.

Country
United Kingdom
Related Organizations
Keywords

Environmental management, 330, Coral Reefs, QH301 Biology, Australia, Fishes, 500, Water, TA Engineering (General). Civil engineering (General), Stereo-video, Functional ecology, Oil and gas pipelines, QH301, TA, Animals, Biomass, Ecosystem, Decommissioning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
hybrid
Related to Research communities
Energy Research