Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Marine Policyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Marine Policy
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?

Authors: Neil J. Holbrook; Piers K. Dunstan; James S. Risbey; Quentin A Hanich; Bradley R. Moore; Johann D. Bell; Johann D. Bell; +4 Authors

How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?

Abstract

Climate and weather have profound effects on economies, the food security and livelihoods of communities throughout the Pacific Island region. These effects are particularly important for small-scale fisheries and occur, for example, through changes in sea surface temperature, primary productivity, ocean currents, rainfall patterns, and through cyclones. This variability has impacts over both short and long time scales. We differentiate climate predictions (the actual state of climate at a particular point in time) from climate projections (the average state of climate over long time scales). The ability to predict environmental conditions over the time scale of months to decades will assist governments and coastal communities to reduce the impacts of climatic variability and take advantage of opportunities. We explore the potential to make reliable climate predictions over time scales of six months to 10 years for use by policy makers, managers and communities. We also describe how climate predictions can be used to make decisions on short time scales that should be of direct benefit to sustainable management of small-scale fisheries, and to disaster risk reduction, in Small-Island Developing States in the Pacific.

Country
Australia
Keywords

333, Pacific, climate change, fisheries, resource sustainability, Arts and Humanities, Law

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%