
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mussels as a tool for mitigation of nutrients in the marine environment

pmid: 24673831
Long-line mussel farming has been proposed as a mitigation tool for removal of excess nutrients in eutrophic coastal waters. A full-scale mussel farm optimized for cost efficient nutrient removal was established in the eutrophic Skive Fjord, Denmark where biological and economic parameters related to nutrient removal was monitored throughout a full production cycle (1 yr). The results showed that it was possible to obtain a high area specific biomass of 60 t WW ha(-1) eqvivalent to a nitrogen and phosphorus removal of 0.6-0.9 and 0.03-0.04 t ha(-1)yr, respectively. The analysis of the costs related to establishment, maintenance and harvest revealed that mussel production optimized for mitigation can be carried out at a lower cost compared to mussel production for (human) consumption. The costs for nutrient removal was 14.8 € kg(-1)N making mitigation mussel production a cost-efficient measure compared to the most expensive land-based measures.
- University of Copenhagen Denmark
- University of Southern Denmark Denmark
- University of Copenhagen Denmark
- Aarhus University Denmark
Mytilus edulis, Nitrogen, Cost-Benefit Analysis, Denmark, Aquaculture, Heavy metal bioaccumulation, Nutrient removal, Metals, Heavy, Water Pollution, Chemical, Animals, Biomass, Mussel production, Environmental Restoration and Remediation, Phosphorus, Eutrophication, Cost-effectiveness
Mytilus edulis, Nitrogen, Cost-Benefit Analysis, Denmark, Aquaculture, Heavy metal bioaccumulation, Nutrient removal, Metals, Heavy, Water Pollution, Chemical, Animals, Biomass, Mussel production, Environmental Restoration and Remediation, Phosphorus, Eutrophication, Cost-effectiveness
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).135 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
